
www.manaraa.com

Research Article
Maintaining Specific Natural Frequency of Damped System
despite Mass Modification

Rui Zhu ,1 Qingguo Fei ,1 Dong Jiang,2,3 and Zhifu Cao3

1School of Mechanical Engineering, Southeast University, Nanjing 210096, China
2School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
3Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing, 211189, China

Correspondence should be addressed to Qingguo Fei; qgfei@seu.edu.cn

Received 14 April 2019; Revised 5 September 2019; Accepted 17 September 2019; Published 3 November 2019

Academic Editor: Santiago Hernández

Copyright © 2019 Rui Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In aerospace engineering, structural modifications play an essential role in design of structures. In some cases, it is necessary to
guarantee that a specific natural frequency of the structure remains unchanged when additional masses are attached. The
methods based on the Sherman-Morrison formula are proposed in this paper, called the optimal selection method and the
absolute value method, to maintain the specific natural frequency. The methods are both implemented by installing a spring on
the system and can eliminate the effect of the additional mass on the specific frequency. The proposed methods were verified to
be effective and accurate through numerical simulations. Results show that the optimal selection method has similar
applicability as the existing real value method, and both methods are applicable only in cases of small damping. In addition, the
absolute value method has extensive applicability in systems with either small or large damping.

1. Introduction

The structural modification is an essential aspect in many
engineering designs. Structural modification generally com-
prises mass, stiffness, and damping changes. During the
design and operation phase [1, 2], structural modifications
are as a common way to improve the dynamic characteris-
tics of the original structure, such as the frequency control
[3, 4]. A common source of excessive vibration is at a natural
frequency that coincides with or lies in the vicinity of an
ambient vibration frequency [5, 6], which can cause struc-
tural failure [7]. When the original system has made a differ-
ence, preventing resonance or preserving a certain frequency
of the system can avoid the requirement of designing the
new controller.

Generally, the structural modification problem is classi-
fied into two categories: the direct structural modification
problem [8] and the inverse structural modification problem
[9, 10]. The direct structural modification problem is aimed
at predicting the effect of physical modifications on the
dynamic behavior of the structure. The inverse structural

modification problem involves determining the necessary
adjustments so that the modified structure can possess the
desired dynamic response.

In recent years, the inverse structural modification prob-
lem has drawn widespread attention. A method incorporat-
ing modal analysis for determining mass and stiffness
modifications was developed for achieving the desired spec-
trum for target systems [11]. This method can overcome
the difficulties resulting from the incomplete data and
addresses an optimization problem instead of providing an
exact solution. Li and He [12] developed an approach for
structural modification of a dynamic system, wherein a set
of linear equations were employed instead of an eigenvalue
solution, thereby requiring the frequency response functions
(FRFs) at merely the modification positions. Furthermore,
Gürgöze and Inceo [13] determined the stiffness coefficient
required for preserving the fundamental frequency of a beam
structure under various supporting conditions to eliminate
the effect of mass modification. A substructure-coupling con-
cept [14] was utilized to obtain system equations. This can be
applied to substantial model changes and get a considerable
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improvement in the natural frequencies. In other work, Mer-
mertaş and Gürgöze [15] presented the impedance coupling
method to preserve the fundamental frequency of the plates.
The experiment results showed that the method is correct
and valid. Joseph [16] presented an approach based on the
solution of a partial inverse eigenvalue problem, and this
method can be utilized to generate initial feasible designs
for optimum design problems with frequency constraints.
Olsson and Lidström [9] applied linear constraints on an
undamped structure in an inverse manner to obtain designed
modal properties. Çakar [17] developed the method based on
the Sherman-Morrison (SM) formula [18] to determine the
necessary spring stiffness, and further studies on weakly
damped structures were conducted as well. There are some
limitations in practical engineering application since this
method had been only proved to be applicable for systems
with low-level damping. Different from the existing tech-
niques of freedom correction, a method [19] based on recep-
tances was presented to achieve the modification by adding
multiple mass-spring subsystems to the original structure.
Two methods [20] were developed to prevent the shifting
of the troublesome natural frequencies of an undamped sys-
tem after mass modification. This study is interested in the
determination of necessary stiffness modifications in order
to keep a certain number of natural frequencies of the system
unchanged despite mass attachments. Based on the concur-
rent use of the modification of the system mass and stiffness
parameters, a control approach was proposed in the experi-
mental application [8]. The allowable subspace was utilized
to perform eigenstructure assignment in the vibration sys-
tem. The advantage of the method is to overcome the limita-
tions either passive modifications or active control alone.
Herrada et al. [21] presented a method for accelerating para-
metric studies to account for local modifications in large
finite element models.

Most of the existing research focuses on the structural
modification of undamped structures, while limited study
has been carried out on damped systems for structural mod-
ification. The current literature simply refers to the effect of
damping, which is only suitable for the systems with low-
level damping. Two methods are developed that installing
the spring on the structure guarantees a certain natural fre-
quency for the damped structure unchanged after the mass
modification. The outline of the work is formulated as fol-
lows: The theoretical basis of two methods (the optimal
selection method and the absolute value method) is intro-
duced in Section 2. Numerical simulation is conducted by
employing a six degrees of freedom (Six-DoFs) spring-mass
system in Section 3.1 to verify the effectiveness of the
approaches. The best spring location between the coordinates
is determined in Section 3.2. The adaptability to systems with
the different levels of damping is further investigated in
Section 3.3. Subsequently, a six-bay truss is undertaken to
verify the approaches in Section 3.4.

2. Theory of Structural Modification

Amethod has been applied to determine the necessary spring
coefficient k in the system in Ref. [17]. A specific natural fre-

quency of the structure is kept unchanged after modifica-
tions. For a damped system, the spring coefficient required
k is a complex value in this method. In the process of main-
taining a specific natural frequency, the spring coefficient
takes the real part of k, ignoring the influence of the imagi-
nary part. For the sake of description, this method is called
“real method.” It is only suitable for the systems with low-
level damping. To improve the applicability of damped struc-
tures, we proposed two methods to determine the spring
coefficient k of the substituting calculation in this paper.
These methods are the optimal selection method and the
absolute value method, respectively.

2.1. Determine the Initial Spring Coefficient. A damped mass-
spring system with n degrees of freedom is illustrated in
Figure 1, where mass m∗ represents the designed mass mod-
ification in the coordinate t. The system without additional
mass m∗ is considered as the original system. K, M, and C
are the stiffness, mass, and structural damping matrices of
the original system, respectively. The dynamic stiffness
matrix Z of the structure is written as

Z =K − ω2M + iωC, ð1Þ

where ω is the circular frequency and i is the imaginary
unit. The matrix Z is defined with respect to those coordi-
nates, say q.

For the original system, the natural frequencies are
represented as

g = f M, C,Kð Þ, ð2Þ

which is the function of the matrices (K, M, and C).
The natural frequencies of the structure tend to decrease

when the extra mass m∗ is added to the system. The updated
frequencies of the modified system are represented as

g∗ = f M +m∗, C,Kð Þ: ð3Þ

To guarantee a certain natural frequency unchanged
after mass modification, the spring is added on the original
structure. There are two ways. One is that a spring k∗re is
added between some predefined coordinates r and e. The
other is that a grounded spring k∗rr is added in the coordinate
r in Figure 2. They both remove the frequency shifting
effects caused by the mass m∗. At this time, the natural fre-
quencies of the structure after spring modification can be
represented as

g∗∗ = f M +m∗, C,K + k∗reð Þ: ð4Þ

The key point is to determine the coefficient of the
additional spring. For practical engineering application, it
is difficult to obtain the matricesM, C, and K of the structure
accurately. However, the FRFs of the structure can be
obtained through experimental measurement directly. When
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the structure has modification, the change of the dynamic
stiffness matrix can be represented as

ΔZ = ∂Z
∂q

dq, ð5Þ

where ∂ should be considered as the partial derivative of Z
with respect to all the coordinates.

The dynamic stiffness matrix Z∗ of the modified system
can be described as

Z∗ = Z + ∂Z
∂q

dq: ð6Þ

According to the relationship between the receptance
matrix and the dynamic stiffness matrix, the receptance can
be obtained by

α = Z−1,
α∗ = Z∗−1:

ð7Þ

If ΔZ = fugfvgT , where fug and fvg are column vectors,
the FRFs of the modified structure can be calculated by using
the SM formula:

α∗ = Z∗−1 = α − α uf g vf gTα
1 + vf gTα uf g

: ð8Þ

The necessary stiffness coefficient can be determined
conclusively based on the SM formula. The specific deriva-
tion process is as follows.

For the initial system, αre is the receptance; the subscripts
r and e are the response and excitation coordinates, respec-
tively. When the mass m∗ is added for the design aim, the
receptance is represented by α∗re. To remove the shifting effect
of the massm∗, k∗re can be added between coordinates r and e.
Here, the dynamic stiffness matrix is represented by Z∗∗, and
the receptance is represented by α∗∗re . The change between Z∗

and Z∗∗ can be represented by ΔZ∗ caused by the stiffness
coefficient k∗re. For the stiffness modification, the correspond-
ing modification vectors fu∗g and fv∗g are written by

u∗f g = ⋯ −1 ⋯ 1 ⋯f gT , ð9Þ

v∗f g = ⋯ −k∗re ⋯ k∗re ⋯f gT , ð10Þ
where other elements of the vectors fu∗g and fv∗g are all
zero except the coordinate r and the coordinate e. Substitut-
ing Equation (9) and Equation (10) into Equation (8), the
relationship between α∗re and α∗∗re can be obtained by

α∗∗re = α∗re + k∗re α∗rrα
∗
ee − α∗re

2� �

1 + k∗re α∗rr − 2α∗re + α∗eeð Þ , ð11Þ

where the superscript (∗) of α∗re shows the mass modifica-
tion, and α∗∗re contains the effects of the mass modification
and the stiffness modification. In the modal test, the accel-
eration signal is generally more sensitive and can be better
measured. According to the relationship of acceleration
admittance and displacement admittance (h = −ω2α), it is
realizable to acquire the acceleration admittance h∗∗re using
Equation (11):

h∗∗re =
−ω2h∗re + k∗re h∗rrh

∗
ee − h∗re

2
� �

−ω2 + k∗re h∗rr − 2h∗re + h∗eeð Þ : ð12Þ

When a grounded spring k∗rr is added in coordinate r
to compensate the shifting effect of the added mass on a
specific natural frequency, the corresponding modification
vectors fu∗g and fv∗g can be written by

u∗f g = ⋯ 1 ⋯f gT ,
v∗f g = ⋯ k∗rr ⋯f gT ,

ð13Þ
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Figure 2: Damped spring-mass system with n DoFs modified by mass and a spring.
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Figure 1: Damped spring-mass system with n DoFs modified by mass.
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where other elements of the vectors fu∗g and fv∗g are all
zero except coordinate r. The corresponding Equation (12)
can be written as

h∗∗rr = −ω2h∗rr
−ω2 + k∗rrh

∗
rr
: ð14Þ

Next, how to determine the spring k∗re is introduced.
To guarantee the specific natural frequency (ωo) of the
structure unchanged after the mass and spring modifica-
tions, the amplitude curve of the FRF h∗∗re should have a
maximum local value at the frequency ωo. In other words,
the denominator of Equation (12) is equal to zero:

−ω2 + k∗re h∗rr − 2h∗re + h∗eeð Þ = 0, ω = ωo: ð15Þ

Then, the necessary spring coefficient k∗re can be calcu-
lated by Equation (15):

k∗re =
ω2
o

h∗rr − 2h∗re + h∗ee
: ð16Þ

When the system is undamped, the necessary spring
coefficient k∗re is the real value in Equation (16). However,
the actual structure is damped, and the FRF is a complex
function. Then, the denominator of Equation (16) is a
complex value, and corresponding k∗re is a complex stiff-
ness. The actual spring stiffness should be positive. It is
impossible to use k∗re in Equation (16) directly. To deter-
mine the effective stiffness, the optimal selection method
and the absolute value method are proposed.

2.2. Optimal Selection Method. A method called the optimal
selection is proposed. The main idea of the method is that
the problem of determining the effective stiffness problem
is equivalent to the problem of solving the minimum value
of the quadratic equation with one unknown.

As known in the engineering application, the spring stiff-
ness k∗re needed to compensate the effect of the mass m∗ at
ωo should be positive. In Equation (12), both the numerator
and the denominator change on the right side of the equa-
tion when k∗re changes. Assume that the influence of stiffness
on the numerator is ignored, only the impact on the denom-
inator is considered. To keep the certain natural frequency
(ωo) unchanged, the amplitude curve of the FRF h∗∗re should
have a maximum local value at ωo. With ignoring the stiff-
ness influence on the numerator, the square of the module
of the denominator in Equation (12) should reach a mini-
mum at ωo.

At the frequency ωo, the parenthesis item in the
denominator of Equation (12) is known as a complex,
which can be represented by (a + bi), and a and b are real
numbers. When the natural frequency is ωo, the denomina-
tor can be written by

W k∗reð Þ = k∗rea − ω2
o

� �
+ k∗rebi: ð17Þ

The square of the module of W can be expressed as

F k∗reð Þ = a2 + b2
� �

k∗re
2 − 2aω2

ok
∗
re + ω4

o, ð18Þ

where function F is a quadratic equation with one unknown
and k∗re is the real independent variable. From the above anal-
ysis, the special frequency (ωo) of the structure can be
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Figure 3: Six-DoFs damped mass-spring system with added mass
and spring.

Table 1: Natural frequencies of the original system and the
modified system.

Mode order (r) 1 2 3 4 5 6

ωr 0.109 0.145 0.205 0.261 0.314 0.337

ω∗
r 0.106 0.133 0.199 0.254 0.310 0.330

Error (%) 2.75 8.28 2.93 2.68 1.27 2.08
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Figure 4: Comparison of exact and modified FRF h34 after mass
modification.
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guaranteed when function F reaches the minimum value.
The minimum amount of F is on the symmetry axis, so the
necessary stiffness coefficient can be determined by

k∗re Optð Þ =
aω2

o

a2 + b2
: ð19Þ

From the perspective of optimal selection, the stiffness
of the upper calculation in Equation (19) is added to the
damped system, which can ensure the specific frequency
unchanged.

2.3. Absolute Value Method. Different from neglecting the
effect of the imaginary part of stiffness in the existing method
above, a method of considering the imaginary part is pro-
posed, namely, the absolute value method. It is known that

when the structure is a damped system, k∗re is a complex
number in Equation (16). For complex numbers, two
main characteristics are the modulus and phase of the
complex number.

In numerical calculation, the imaginary part of k∗re can-
not be omitted. From the physical point of view, the
spring stiffness is the real number without the imaginary
part. Considering views above at the same time, the con-
cept of complex modulus is adopted. The desired spring
coefficient can be obtained directly from the absolute value
of k∗re in Equation (16):

k∗abs = k∗rej j = ω2
o

h∗rr ωoð Þ − 2h∗re ωoð Þ + h∗ee ωoð Þj j : ð20Þ

In this method, the desired spring coefficient not only
considers the imaginary part of the initial stiffness but also
guarantees the real number to meet the actual engineering
requirements.

3. Numerical Case Studies

To verify the effectiveness of the proposed methods, numer-
ical simulations are conducted by the Six-DoFs spring-mass
system and six-bay truss. The best spring location of the
Six-DoFs damped system between the coordinates is dis-
cussed. For further study on the applicability of methods,
the structure with high-level damping is investigated.

3.1. Case 1: Six-DoFs Spring-Mass System. For the simula-
tions, a six degrees of freedom model consisting of six
concentrated masses attached to nine translational springs
is considered as shown in Figure 3. The system parameters
are mi = 1 kg (i = 1, 2,⋯, 6), ki = 1N/m (i = 1, 2,⋯, 9), and
ci = 0:005Ns/m (i = 1, 2,⋯, 9). For the design aim, a
lumped mass m∗ of 0.5 kg is added as the mass modifica-
tion in coordinate 3.

There are discernible changes in the natural frequencies
of the structure due to the attachment of the additional mass.
The natural frequencies of the modified system and the orig-
inal system are shown in Table 1. ωr represents the natural
frequency of the original system, and ω∗

r represents the
natural frequency of the modified system. As is known,
the natural frequencies of the system decrease due to mass
modification. The errors of the natural frequencies of the
modified system relative to the original system are shown
in the fourth line of Table 1. Meanwhile, the transfer acceler-
ation admittance h34 of the original and modified systems is
compared in Figure 4. As expected, the resonance frequencies

Table 2: Necessary spring coefficient (N/m) and the natural frequencies.

Methods Spring coefficient
Natural frequencies (Hz)

1 2 3 4 5 6

Original 0.109 0.145 0.205 0.261 0.314 0.337

Real method 2.327 0.106 0.145 0.198 0.283 0.310 0.430

Optimal selection method k∗34 optð Þ = 2:327 0.106 0.145 0.198 0.283 0.310 0.430

Absolute value method k∗34 absð Þ = 2:333 0.106 (2.8%) 0.145 (0.0%) 0.199 (3.4%) 0.288 (8.4%) 0.310 (1.3%) 0.430 (27.6%)
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Figure 5: Comparison of exact and modified FRF h34 after the mass
and stiffness modification.

Table 3: Necessary spring coefficient k∗ijðoptÞ (N/m).

Coordinate j
1 2 3 4 5 6

Coordinate i

1 -2.533 -1.189 -0.897 -0.595 4.326 0.197

2 — 1.582 -1.608 -1.144 0.766 0.155

3 — — 0.415 2.327 0.312 0.112

4 — — — -47.982 3.801 0.294

5 — — — — 3.712 1.882

6 — — — — — 0.292
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of the system after mass modification are lower than those
of the original system. The maximum error occurs at the
2nd order frequency (8.28%). And the frequency errors
of other orders are 2.75% (1st order), 2.93% (3rd order),
2.68% (4th order), 1.27% (5th order), and 2.08% (6th
order), respectively.

Due to the obvious change of the second order after mass
modification, this frequency is desired to be kept constant.
To satisfy the desire above, decreasing the natural frequency
should be compensated by stiffness modification. In practical

engineering application, there is a limited number of the
spring installation position because of the design limitations.
For illustration, let us assume, the position between the coor-
dinate 3 and the coordinate 4 is regarded as the predefined
location for the attachment of the spring. The stiffness coef-
ficient of the spring is represented by k∗34. The optimal selec-
tion method, the absolute value method, and the real method
are used to determine the spring stiffness, respectively.

Based on the SM formula, the value of the initial spring
coefficient is k∗34 = 2:327 − 0:162i by using Equation (16).
The stiffness determined by the three methods above is given
in Table 2, respectively. Results show that the spring coeffi-
cient k∗34ðoptÞ = 2:327 is very close to k∗34ðabsÞ = 2:333. And the
spring coefficient determined by the real method is equal to
the one determined by the optimal selection method. Mean-
while, the results of the three methods after the stiffness mod-
ification are consistent.

As shown in Table 2, the desired and achieved natural
frequencies were shown in bold. The second natural fre-
quency of the system after the stiffness modification keeps
unchanged (0.145Hz), and other natural frequencies change.

After the stiffness modification, the acceleration FRF of
the modified structure is calculated. The exact and modified
FRF h34 are shown in Figure 5. Results show that the FRF
of the modified system near the second-order frequency
range agrees well with the FRF of the original system. And
the second natural frequency of the modified system is
unchanged despite mass attachment by using the three

Table 4: Stiffness values of different methods under different modal damping ratios.

Cases Modal damping ratio of the second natural frequency (%)
Methods 0.84 1.66 2.52 3.39 4.24

Initial stiffness 2.202-0.329i 1.871-1.129i 1.464-1.432i 1.075-1.574i 0.745-1.614i

Real method 2.202 1.871 1.464 1.075 0.745

Optimal selection method 2.202 1.871 1.464 1.075 0.745

Absolute value method 2.292 2.185 2.048 1.906 1.777

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.5

1.0

1.5

2.0

2.5

Modal damping ratio (%)

St
iff

ne
ss

 co
effi

ci
en

t (
N

/m
)

Real method
Optimal method
Absolute value method

Figure 6: Stiffness values under different modal damping ratios.

Table 5: Second frequency and error under different modal
damping ratios.

Cases
Modal damping ratio of the second

frequency (%)
Methods 0.84 1.66 2.52 3.39 4.24

Real method

Frequency (Hz) 0.1447 0.1440 0.1438 0.1435 0.1397

Error (%) 0.178 0.69 0.82 1.05 3.66

Optimal selection method

Frequency (Hz) 0.1447 0.1440 0.1438 0.1435 0.1397

Error (%) 0.178 0.69 0.82 1.05 3.66

Absolute value method

Frequency (Hz) 0.1449 0.1447 0.1444 0.1441 0.1438

Error (%) 0.06 0.20 0.40 0.62 0.83
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Figure 7: The errors of the three methods.
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different methods above. Consequently, the efficiency of the
two proposed methods is validated.

3.2. Case 2: The Best Spring Location. In this section, the aim
is to determine the best spring location between all the coor-
dinates. Necessary spring coefficients obtained by the opti-
mal selection method are presented in Table 3. As known,
the added spring k∗ij is equal to k∗ji. Results show that it is
not valid that some k∗ijðoptÞ, such as k∗12ðoptÞ = −1:189, is nega-
tive because theoretically the spring stiffness should be posi-
tive. It is assumed that the optimal position is the one with
the minimum spring stiffness. It can be concluded that the

best position for spring installation is between the coordi-
nates 3 and 6 (k∗36ðoptÞ = 0:112).

3.3. Case 3: Damping Study. In Ref. [17], the real method is
only acceptable for the system with small damping and not
acceptable for the system with high-level damping. The
applicability of the proposed methods in this paper to the
structure with high-level damping is investigated. The
research object is still the same spring-mass system shown
in Figure 3. Different damping coefficients are considered
from 0.02 to 0.10N/m, where the interval is 0.02 and there
are five cases.
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Figure 8: Comparison of FRFs between original and modified systems with modal damping ratio 0.84%.
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Figure 9: Comparison of FRFs between original and modified systems with modal damping ratio 1.66%.
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As is seen in Table 4, the initial stiffness by using Equa-
tion (16) is shown in the fifth line. For the different damping
cases, the modal damping ratio of the corresponding second-
order frequency is given in the second line of Table 4. Results
show that with the increase of the modal damping ratio, (i)
the real part and the imaginary part of the initial stiffness
both decrease; (ii) the stiffness values of all methods all
reduce, and the spring coefficient determined by the real
method is equal to the one determined by the optimal selec-
tion method; and (iii) the reduction of the stiffness value
determined by the absolute value method is smaller than that
of the optimal selection method shown in Figure 6.

After mass and stiffness modification, the error relative to
0.145Hz and the second frequency are given in Table 5. The

errors of three methods are given in Figure 7 so that the pre-
cision of the three methods are compared. Meanwhile, the
acceleration FRFs of the modified structure after the stiffness
modification are calculated and compared with those of the
original for different cases in Figures 8–12.

As can be seen in Figure 7, the error of the real method
(optimal selection method) is larger than the absolute
method under the same damping condition. In the case of a
low modal damping ratio (1%), the error of the real method
is small. However, the error increases significantly with the
increase of the modal damping ratio; especially when the
modal damping ratio reaches 4.24%, the error has reached
3.6%. Results show that the real method is only acceptable
for the system with small damping and not acceptable for
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Figure 10: Comparison of FRFs between original and modified systems with modal damping ratio 2.52%.
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Figure 11: Comparison of FRFs between original and modified systems with modal damping ratio 3.39%.
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the system with high-level damping. Meanwhile, the error of
the absolute value method is still relatively small though the
high-level damping. It is obvious that the absolute value
method has outstanding performance. The difference
between the results of the two methods is that the real
method ignores the effect of the imaginary part, while the
absolute method considers the factor of the imaginary part.
When the damping is larger, the effect of the imaginary part
is particularly important.

3.4. Case 4: Six-Bay Truss. A six-bay truss is investigated in
Figure 13, which has 25 truss elements and 28 degrees of free-

dom (DoFs). The cross-sectional area of each truss element is
Ai = 1 × 10−4 m2, Young’s modulus for the truss-element
material is E = 7 × 1010 Pa, the density of the truss-element
material is ρ = 2700 kg/m3, and the geometric parameter is
l = 1:5m. The global DoFs of the joints are denoted by zi,
and the number of nodes is shown in Figure 13. The pro-
portional damping model is adopted:

C = μM + βK, ð21Þ

where μ and β are proportional coefficients. In this case, μ
is 4 and β is 5 × 10‐5.

The FRFs of the original system are calculated for fre-
quency band 0~200Hz sampling at 0.1Hz, and natural
frequencies ωr are given in Table 6. Assume that a lumped
mass of 2 kg is placed in the node 6. The modified natural fre-
quencies ω∗

r are obtained. As expected, the natural frequen-
cies of the modified structure decrease. For example, the first
mode’s frequency shifts from 38.68Hz to 36.06Hz.
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Figure 12: Comparison of FRFs between original and modified systems with modal damping ratio 4.24%.
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Figure 13: Planar truss system.

Table 6: Natural frequencies of the original system and the
modified system.

Mode order (r) 1 2 3 4 5

ωr 38.68 78.87 117.16 175.71 195.51

ω∗
r 36.06 76.03 106.53 159.26 177.10

Error (%) 6.75 3.60 9.07 9.37 9.42
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A grounded spring is added in the z16 direction to keep
the first natural frequency unchanged. The value of the initial
spring coefficient is k∗ = 5:82 × 104 − 1:29 × 104i. The stiff-
ness determined by the proposed methods above is given in
Table 7, respectively. Results show that the calculated stiff-
ness values are slightly different between the optimal selec-
tion method and the absolute value method. The first
natural frequency of the modified structure fits to the original
value well, and the error between the modified value and the
original value is negligible (only 0.06%). The exact and mod-
ified FRF h34 are shown in Figure 14. The FRF of the modified
system near the first-order frequency range agrees well with
the FRF of the original system.

4. Conclusion

To maintain a specific frequency of a damped system after
mass modification, we propose herein the optimal selection
method and the absolute value method. These two methods
are implemented by installing a spring on the system. The
efficiency and accuracy of the proposed methods are verified
by the numerical simulations of the Six-DoFs damped system
and a six-bay truss. The best spring location of the Six-DoFs
damped system between the coordinates is determined.
Results show that the optimal selection method has a similar
capacity as the real method, which is only acceptable for the
system with small damping. When the modal damping ratio
reaches 4.24%, the second-order error in the real method is

up to 3.66%, and that of the absolute method is only 0.83%.
Therefore, the absolute method has extensive applicability
for not only low-level damping but also high-level damping.
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